Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
China Journal of Chinese Materia Medica ; (24): 85-94, 2022.
Article in Chinese | WPRIM | ID: wpr-927914

ABSTRACT

With reference to the production process documented in Chinese Pharmacopoeia, this paper prepared the calibrator samples of Xiaochaihu Granules from multiple batches and established a method for fingerprint analysis and content determination that could be used to evaluate Xiaochaihu Granules available in market. Multiple batches of Chinese herbal pieces contained in Xiaochaihu Granules were collected for preparing the calibrator samples according to the process in Chinese Pharmacopoeia. Following the establishment of fingerprints for calibrator samples by UHPLC, the method for determining the contents of saikosaponin B2, saikosaponin B1, baicalin, wogonoside, baicalein, liquiritin, glycyrrhizin G2 and glycyrrhizic acid in Xiaochaihu Granules was established. The experimental results showed that the fingerprints of calibrator samples had 26 common peaks, covering the chemical compounds of main herbs Bupleuri Radix, Scutellariae Radix, Changii Radix, Glycyrrhizae Radix et Rhizoma, and Rhizoma Zingiberis Recens. The similarity of fingerprints for 47 batches of Xiaochaihu Granules from 31 companies with the calibrator sample fingerprint ranged from 0.74 to 0.99, indicating good applicability of the established fingerprint. The contents of main components baicalin, saikosaponin B2, and glycyrrhizic acid in Xiaochaihu Granules were within the ranges of 22.917-49.108 mg per bag(RSD 19%), 0.28-2.19 mg per bag(RSD 62%), and 0.897-6.541 mg per bag(RSD 41%), respectively. The quality difference in saikosaponin B2, and glycyrrhizic acid among different manufacturers was significant. The fingerprint analysis and content determination method for calibrator samples of Xiaochaihu Granules prepared according to the production process in Chinese Pharmacopoeia has been proved suitable for evaluating the quality of Xiaochaihu Granules from different manufacturers. Saikosaponin B2, glycyrrhizic acid, and liquiritin should be added as content control indicators for Xiaochaihu Granules, aiming to further improve the product quality.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Glycyrrhizic Acid/analysis , Rhizome/chemistry , Scutellaria baicalensis
2.
China Journal of Chinese Materia Medica ; (24): 2099-2108, 2022.
Article in Chinese | WPRIM | ID: wpr-928150

ABSTRACT

According to the polarity of different components in Sanpian Decoction, two fingerprints were established. Then the substance benchmark freeze-dried powder of 15 batches of Sanpian Decoction was prepared, followed by the determination of the fingerprints, index component content, and dry extract rates, the identification of attribution of characteristic peaks, and the calculation of similarities between these fingerprints and the reference(R), the content and transfer rate ranges of ferulic acid, sinapine thiocyanate, liquiritin, and glycyrrhizic acid, and the dry extract rate range. The results showed that the similarities of 15 batches of the substance benchmark fingerprints with R were all greater than 0.900.Further summarization of the characteristic peaks revealed that there were a total of 20 characteristic peaks in fingerprint 1, among which, eight were from Sinapis Semen, four from Paeoniae Radix Alba, six from Chuanxiong Rhizoma, and two from Glycyrrhizae Radix et Rhizoma. A total of 16 characteristic peaks were observed in fingerprint 2, including one from Sinapis Semen, three from Paeoniae Radix Alba, eight from Chuanxiong Rhizoma, and four from Glycyrrhizae Radix et Rhizoma. The average dry extract rate of 15 batches of substance benchmarks was 18.25%, with a dry extract rate range of 16.28%-20.76%. The index component content and transfer rate ranges were listed as follows: 0.15%-0.18% and 38.81%-58.05% for ferulic acid; 0.26%-0.42% and 36.51%-51.02% for sinapine thiocyanate; 0.09%-0.15% and 48.80%-76.61% for liquiritin; 0.13%-0.24% and 23.45%-35.61% for glycyrrhizic acid. The fingerprint, dry extract rate, and index component content determination was combined for analyzing the quality value transfer of substance benchmarks in the classic prescription Sanpian Decoction.The established quality evaluation method for the substance benchmarks was stable and feasible, which has provided a basis for the quality control of Sanpian Decoction and the follow-up development of related preparations.


Subject(s)
Benchmarking , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Glycyrrhizic Acid/analysis , Paeonia , Quality Control , Thiocyanates
3.
China Journal of Chinese Materia Medica ; (24): 2090-2098, 2022.
Article in Chinese | WPRIM | ID: wpr-928149

ABSTRACT

The methods for determining the characteristic chromatogram and index components content of Xuanfu Daizhe Decoction were established to provide a scientific basis for the quality evaluation of substance benchmarks and preparations. Eighteen batches of Xuanfu Daizhe Decoction were prepared with the decoction pieces of different batches and of the same batch were prepared respectively, and the HPLC characteristic chromatograms of these samples were established. The similarities of the chromatographic fingerprints were analyzed. With liquiritin, glycyrrhizic acid, 6-gingerol, ginsenoside Rg_1, and ginsenoside Re as index components, the high performance liquid chromatography was established for content determination with no more than 70%-130% of the mass average as the limit. The results showed that there were 19 characteristic peaks corresponding to the characteristic chromatograms of 18 batches of Xuanfu Daizhe Decoction, including 8 peaks representing liquiritin, 1,5-O-dicaffeoylqunic acid, ginsenoside Rg_1, ginsenoside Re, 1-O-acetyl britannilactone, ginsenoside Rb_1, glycyrrhizic acid, and 6-gingerol, and the fingerprint similarity was greater than 0.97. The contents of liquiritin, glycyrrhizic acid, 6-gingerol, and ginsenosides Rg_1 + Re in the prepared Xuanfu Daizhe Decoction samples were 0.53%-0.86%, 0.61%-1.2%, 0.023%-0.068%, and 0.33%-0.66%, respectively. Except for several batches, most batches of Xuanfu Daizhe Decoction showed stable contents of index components, with no discrete values. The characteristic chromatograms and index components content characterized the information of Inulae Flos, Ginseng Radix et Rhizoma, Glycyrrhizae Radix et Rhizoma, and Zingiberis Rhizoma Recens in Xuanfu Daizhe Decoction. This study provides a scientific basis for the further research on the key chemical properties of substance benchmark and preparations of Xuanfu Daizhe Decoction.


Subject(s)
Benchmarking , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Ginsenosides/analysis , Glycyrrhizic Acid/analysis , Quality Control
4.
China Journal of Chinese Materia Medica ; (24): 306-312, 2022.
Article in Chinese | WPRIM | ID: wpr-927972

ABSTRACT

A total of 18 batches of Zhuru Decoction samples were prepared. Chromatographic fingerprints were established for Zhuru Decoction and single decoction pieces, the content of which was then determined. The extraction rate ranges, content, and transfer rate ranges of puerarin, liquiritin, and glycyrrhizic acid, together with the common peaks and the similarity range of the fingerprints, were determined to clarify key quality attributes of Zhuru Decoction. The 18 batches of Zhuru Decoction samples had 25 common peaks and the fingerprint similarity higher than 0.95. Puerariae Lobatae Radix, Glycyrrhizae Radix et Rhizoma, and Zingiberis Rhizoma Recens had 21, 3, and 1 characteristic peaks, respectively. The 18 batches of samples showed the extraction rates within the range of 18.45%-25.29%. Puerarin had the content of 2.20%-3.07% and the transfer rate of 38.5%-45.9%; liquiritin had the content of 0.24%-0.85% and the transfer rate of 15.9%-37.5%; glycyrrhizic acid had the content of 0.39%-1.87% and the transfer rate of 16.2%-32.8%. In this paper, the quality value transmitting of substance benchmarks of Zhuru Decoction was analyzed based on chromatographic fingerprints, extraction rate, and the content of index components. A scientific and stable method was preliminarily established, which provided a scientific basis for the quality control and formulation development of Zhuru Decoction.


Subject(s)
Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/standards , Glycyrrhizic Acid/analysis , Quality Control , Rhizome/chemistry
5.
China Journal of Chinese Materia Medica ; (24): 5209-5218, 2020.
Article in Chinese | WPRIM | ID: wpr-878807

ABSTRACT

Licorice has long been regarded as one of the most popular herbs, with a very wide clinical application range. Whether being used alone or as an ingredient in prescription, it has an important role which cannot be ignored. However, the efficacy and chemical constituents of licorice will change after honey-processing. Therefore, it is necessary to find quality markers before and after honey-processing to lay the foundation for a comprehensive evaluation of the differences between raw and processed licorice pieces. HPLC-DAD was employed to establish fingerprints of raw and processed licorice. Multivariate statistical analysis methods including principal component analysis(PCA) and orthogonal partial least squares discrimination analysis(OPLS-DA) were applied to screen out the differential components before and after processing of licorice. Based on network pharmacology, the targets and pathways corresponding to the differential components were analyzed with databases such as Swiss Target Prediction and Metascape, and the "component-target-pathway" diagram was constructed with Cytoscape 3.6.0 software to predict the potential quality markers. A total of 17 common peaks were successfully identified in the established fingerprint, and seven differential components were selected as potential quality markers(licoricesaponin G2, glycyrrhizic acid, liquiritigenin, liquiritin, isoliquiritin, liquiritin apioside and isoliquiritigenin). The HPLC fingerprint method proposed in this study was efficient and feasible. The above seven differential chemical components screened out as potential quality markers of licorice can help to improve and promote the overall quality. These researches offer more sufficient theoretical basis for scientific application of licorice and its corresponding products.


Subject(s)
Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Glycyrrhiza , Glycyrrhizic Acid/analysis , Honey/analysis
6.
Journal of Medicinal Plants. 2008; 7 (27): 106-114
in Persian | IMEMR | ID: emr-100348

ABSTRACT

Glycyrrhiza glabra L. has been used in respiratory diseases, gastric and duodenal ulcers and liver insufficiencies for many years. The plant grows in different regions of Iran. Since our country is considered one of the greatest exporting countries of the plant roots, investigation of licorice quality from different parts of Iran and determination of the best area for its growing seems to be important. According to validated references, glycyrrhizic acid percentage and water-soluble extractives are determinative of quality; therefore, in this investigation, these two factors have been measured in the plants collected from different regions of Iran. Roots of the plant were collected from Kerman, Kermanshah, Sirjan, Sarhadd [Fars province], Istahban [Fars province], Ghasredasht [Fars province], Najaf Abad [Isfahan province], Ganjnameh [Hamedan province], Ekbatan [Hamedan province], Mahabad, Khorram Abad and Ardabil and water-soluble extractives using maceration method and glycyrrhizic acid percentage with HPLC technique were determined in each sample. The results showed that the amount of water-soluble extractives and glycyrrhizic acid are high in samples from Kermanshah, Sarhadd and Kerman while these two factors are the lowest in the plant roots collected from Ekbatan and Ganjnameh. The plant roots collected from Kermanshah, Sarhadd and Kerman have the highest quality and are the best for medicinal purposes, sweetening and flavoring agent and for exporting as well


Subject(s)
Glycyrrhizic Acid/analysis , Plant Roots
SELECTION OF CITATIONS
SEARCH DETAIL